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1. Introduction 

The systems carrying electric charges are widespread in nature and applications.  

Variational principles and methods play a key role in modeling these systems, and 
they have been developed for a couple of centuries.1–5 The issues of stability and 
instability of electrostatic, magnetostatic, and quasi-static systems are extremely 
important in multiple electrostatic systems (e.g., Earnshaw theorem or the Rayleigh 
surface instability) and in multiple magnetostatic systems (e.g., the well-known 
surfacial patterning in ferrofluids demonstrated in Fig. 1). 

 

Fig. 1 Ferrofluid on a reflective glass plate under the influence of a strong/steep magnetic 
field. (Reprinted with permission of Gregory Maxwell, Wikipedia: 
https://en.wikipedia.org/_wiki/ File: Ferrofluid_Magnet_under_glass.jpg#/.) 

Therefore, it is quite surprising that the key instruments in the analysis of stability 
(e.g., second-energy variation) are essentially underdeveloped. Also, various 
variational approaches, closely associated with the first- and second-energy 
variation, require quite sophisticated mathematical techniques to handle them. 

Variational approaches are of key importance in computational implementations of 
the models. It happens because of the a priori guaranteed mathematical self-
consistency of these methods and open possibilities of using powerful numerical 
schemes based on minimization and optimization. Nonetheless, even a quick glance 
at the literature shows that the variational approach is definitely underdeveloped. 
In particular, in terms of calculus of variations, all of the studies are based on the 
analysis of the first-energy variations (i.e., analysis of ponderomotive forces and 
conditions of equilibriums.) The analysis of the second variation, the cornerstone 
of the stability investigation, is not even touched in those famous publications. 
Moreover, the very expressions of the second-energy variations still remain 
unknown (Grinfeld5–7 and references therein are very rare exceptions to this rule).  

All of the discussed issues lead to the conclusion that numerical modeling remains 
the only realistic chance of exploring various morphological patterns appearing at 
the late stage of destabilization. 

https://en.wikipedia.org/_wiki/
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In the following, we present an iteration scheme of possible numerical analysis of 
the poststability patterns. The approach is based on the variational formulation of 
the model system under study. The presentation is limited to discussion of the 
classical Rayleigh instability of a charged conducting liquid drop. The approach 
permits extension to several other systems, including those accumulating and 
carrying free electric charges not only on the surface, but also inside the bulk, as 
well as the pyroelectric crystals growing on rigid substrates, patterns of 
ferromagnetic liquids, and the like. To make the presentation as simple as possible, 
we limit ourselves to incompressible substances and ignore polarization effects. 

2. Electrocapillary Instabilities 

Rayleigh first predicted8 that an isolated charged conducting drop is 
morphologically unstable if the electric charge is sufficiently great.  

The intuitive explanation (not the professional proof) for the Rayleigh instability is 
rather straightforward. The electrons repel each other and try to stay as far as 
possible from each other. Therefore, they create the forces deforming the drop. The 
assumption of the liquid incompressibility does not allow the spherical drop to 
change its radius. Therefore, the available shape modifications are not radial. One 
of the simplest nonradial modifications is the spheroidal perturbation, as shown in 
Fig. 2.  

 

Fig. 2 Rayleigh instability of a charged conducting incompressible liquid. For a sufficiently 
high charge or small surface energy, the spherical drop becomes unstable with respect to 
spheroidal perturbations. 

From the energetic point of view, we would say that electrons try to diminish the 
accumulated electrostatic energy. To put it another way, the electrostatic energy of 
the system can be lowered by letting the drop deviate from spherical shape. Such 
deformation, however, is opposed by surface tension since the minimum surface 
energy is attained when the shape is spherical. 

The overall instability criterion, then, reflects the balance between these forces. If 
R is the radius of the drop, Q is the net electric charge, and σ is the surface energy 
density of the boundary interface, then Rayleigh’s criterion for morphological 
instability is 
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where  is the surface charge density. 

Per the Rayleigh criterion (Eq. 1), as long as the total charge Q or the surface tension 
σ is large, the surface tension influence dominates, and the spherical shape appears 
to be stable with respect to small nonspherical perturbations of the shape. But when 
the dimensionless number  exceeds the critical value , the spherical 

shape becomes unstable and yields the spheroidal shape. For example, a drop of 
water 1 mm in radius is unstable if it is charged to several volts. 

Rayleigh’s original study was picked up by many researchers including Tonks,9 
Frenkel,10 Melcher and Taylor,11 and others (see extensive lists of relevant 
references in Rosensweig12). Their research showed that, in general, as in 
Rayleigh’s original work, the presence of sufficiently large electrostatic or 
magnetostatic fields leads to the morphological destabilization of plane interfaces. 
This class of instabilities plays a role in the physics of vacuum discharges and in 
the operation of liquid metallic emitters of charged particles. These phenomena 
continue to be in a state of active research. One of the primary questions of interest 
is that of the equilibrium shape of destabilized interfaces.13 From the mathematical 
point of view, such problems of equilibrium are challenging, deeply nonlinear 
problems with unknown boundaries, reminiscent of the classical problem of the 
equilibrium shape of a crystal. 

3. Algorithm of Computer Modeling of Equilibrium Shape and 
Poststable Evolution 

3.1 Energy Minimization Approach 

The Rayleigh problem can be treated as the problem of minimization of the total 
energy comprising 2 ingredients, the total electrostatic energy  and the total 
surface energy : 

 elec surfEW E += . (3) 

τ

Ra 1critRa =

W elecE

surfE
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The surface energy density per unit area in solid substances or in liquid crystals is 
characterized by its dependence on the normal : . For isotropic liquid we 
have just a positive constant function .  

The total electrostatic energy depends upon the charge loading mechanism. In 
choosing the charge loading mechanism, we first supply a certain amount of the 
electric charge Q and then disconnect the battery. Then we arrive at the following 
expression of the total energy ingredients:  

 .
1 2 ,8 Space

surfE d E delec σϕπ Ξ
== Ω ∇ Ξ∫ ∫  (4) 

The second integral in Eq. 4 is the total area of the conductor’s boundaryΞ . 

There are actually 2 functional degrees of freedom in the minimization problem: 1) 
the unknown surface distribution of electric charge and 2) the position of the 
boundary . 

In this minimization problem, the condition of mass conservation should be taken 
into account: 

 3 0
i

ViN constd z =
Ξ

=Ξ∫  , (5) 

where  is the unit normal to the boundary. 

Also, given the total electric charge Q of the conductor, we have to respect the 
constraint:  

 d Q constτ
Ξ

Ξ = =∫  . (6) 

It should be taken into account that the distribution of electric charge appears in 
the total energy implicitly. Indeed, given the probe surface charge distribution 
and the interface position, we have to calculate the corresponding electrostatic 
energy . To do this, we have to calculate the electrostatic potential . In other 

words, one has to solve the electrostatic problem for that geometry and that surface 
charge distribution. That goal can be accomplished by calculating the singular 
integral 

 ( ) ( )*
*

*

z
z d

z z

τ
ϕ

Ξ
= Ξ∫

−


   , (7) 

N
 ( )Nσ



( ) constN σσ = =


τ

Ξ

iN

τ

τ

elecE ϕ
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where is the radius vector of the points on the boundary. The same goal can be 
achieved or by solving the boundary value problem of electrostatics:  

1) inside conductor 

 in constϕ ϕ= = .  (8) 

2) outside conductor 

 0i
iϕ∇ ∇ = .  (9) 

3) at the interface liquid-vacuum 

 , 4outoutin
iNiϕ ϕ ϕ πτ= ∇ = . (10) 

4) at infinity 

 0ϕ → .  (11) 

Thus, from the mathematical point of view, we arrive at the problem of 
multidimensional calculus of variations with the isoperimetric and differential 
constraints, and with the unknown boundary. 

3.2 Two-Step Algorithm of the Energy Minimization 

Now we can formulate the suggested 2-step numerical algorithm. Let , , , 
and be the current positing of the boundary and the current values of the surface 

charge density, the volume of the drop, and the total energy of the system, 
respectively. We use the notations , , , and  for the same quantities in 

the updated position. 

The suggested algorithm of updating provides the validity of 2 following 
relationships: 

 *B B≅  (12) 

and 

 *
tot totW W≤ . (13) 

*z

Ξ τ B

totW

*Ξ
*τ *B *

totW
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The second step requires, in addition to the current value of , the calculation of 
the current mean curvature R of the boundary. Using current values of and R, the 
algorithm requires the calculation of the function , 

 22 R
σχ πτ= −  (14) 

at each point of the current boundary . 

To get the updated position of the conductor’s boundary, move each point of the 
surface in the direction of the local unit normal . The distances  of displacement 
should be different in different points of the boundary (Fig. 3); it should be 
calculated in accordance with the relationship 

 ( )meanε χ χ∆ = − −  , (15) 

where  is a sufficiently small positive number and  is the mean value of the 
of the function  over the surface : 

 1
mean area

dχ
Ξ Ξ

= Ω∫  . (16) 

 
Fig. 3 Toward the 2-stage algorithm of computational analysis of the Rayleigh instability 

We call this surface the upgraded surface and the domain  inside it the 
upgraded domain. Then, we solve the electrostatic problem4,6–9 for the upgraded 
domain and calculate the upgraded total energy . 

4. Conclusion 

We presented an algorithm allowing one to explore numerically the Rayleigh 
problem dealing with destabilization of an electrically charged incompressible 
liquid conductor. The algorithm is based on the variational formulation of the 

τ
τ

χ

Ξ

N


∆
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Rayleigh problem, and, conceptually, it allows one to explore the under-critical, 
critical, and super-critical regimes of charging. Also, the method permits further 
extension for polarizable substances.  
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